
Matt Smith
matts@yelp.com

Popular Dishes
A Deep Dive into an ML Project at Yelp

Software engineer @ Yelp on the
Semantic Business Info team

2 years Mechatronics Engineering ->
1 year Software Engineering ->
2 years CS + C&O

 board games, cooking, language
learning, math

About Me

1st coop as a cyber-security developer

2nd/3rd coop: Yelp operations intern

My Path into Data Science

My Path into Data Science
Can I do data
science now?
(I did Andrew Ng’s ML

course)

Sure!

Yelp’s Mission
Connecting people with great

local businesses.

What is Popular Dishes?

Ease cognitive burden
Show users the best menu items

Aid in discovery
“Take the guesswork out of what to order”

Beautify
Make the existing UI more beautiful

Popular Dishes Mission

Highlights service

Show popular menu items in reviews

Already on the biz page, just needs a UI
update

Popular Dishes Inspiration

Only 30% of restaurants have menus

Users won’t open Yelp to check Popular
Dishes if it’s only there 30% of the time

What would a solution look like?

Popular Dishes Problem

Sometimes we think of ML as a solution to any problem

But for simple problems, ML
● Takes longer
● Creates more tech debt
● Is less efficient

Non-ML Ideas

Idea: Get more menus
● We could try to encourage businesses to submit menus
● Pay a company to scrape menus for us
● Do OCR on user-submitted menu photos
● Scrape business web-pages for menu data

Ultimately this won’t get us enough menus

The last two ideas are also very difficult!

Non-ML Ideas

Idea: If a restaurant sells a dish it’s probably on a menu
somewhere

Create a universal menu merging all of our menus into one

Problem: Fuzzy matching is slow
on big menus, no signature dishes

Non-ML Ideas

Alright… you’ve convinced me.

We’ll use ML to bridge the gap
between reviews and Popular
Dishes.

But how to implement this ML?

ML Ideas

You need:
● A way of turning data -> training data
● A dataset
● A model
● Some infrastructure
● Evaluation metrics

ML Cookbook

Having an algorithm read reviews for a business
and output its entire menu is hard

Litmus test for feasibility: can you do that?

Please read all 5000 reviews and then tell me the
menu from memory

ML Training Data

What I can do:
What things in a review are food?

“I got the spicy chicken burrito
and the nachos”

Do this for each review and
merge the results

ML Training Data

This is a well-known sequence classification problem

● Sequence labelling
○ Mark sections in sequences with labels

○ Named Entity Recognition (NER)
■ John Doe lives in Canada ->

(John Doe)(Person) lives in (Canada)(Place)

○ Food Recognition
■ The risotto was amazing ->

The (risotto)(Food) was amazing

ML Training Data

We don’t just mark things as food.

● BIESO Labels
○ Begin, Inside, End, Singleton, Outside
○ (The O) (Spicy B) (Chicken I) (Burrito E) (and O) (nachos S) (were O) (delicious O)
○ Some sequences can be invalid (eg: O,O,B,O,E)

We do this to differentiate adjacent words:
“I got the steak, risotto and greek salad” vs
“I got the (steak S), (risotto S) and (greek B) (salad E)”

ML Training Data

Okay but…

To train a model to do this tagging we
need some training examples

Our existing tools look promising

We can modify our existing matcher to
tag the matches with BIESO labels

ML Training Data

The result:

We’ve created a way to turn our data into training data!

ML Training Data

You need:
● A way of turning data -> training data
● A dataset
● A model
● Some infrastructure
● Evaluation metrics

ML Cookbook

We’ll just make a naive choice for now:

Restaurants with menus and at least 5 reviews

ML Dataset

~20 million restaurant reviews
30% of restaurants have menus

ML Dataset

You need:
● A way of turning data -> training data
● A dataset
● A model
● Some infrastructure
● Evaluation metrics

ML Cookbook

Zhilin Yang & Salakhutdinov’s Sequence
Tagging Model:
● State-of-the-art at project inception
● BiGRU
● Learned character embeddings
● CRF decoding

What the heck is this thing?

ML Model

Embeddings:
A set of k words can be embedded as a
k-dimensional discrete space

But this makes it hard for the model to
learn word associations (and results in
huge model sizes)

We can project this k-dimensional space
into a nicer low-dimensional vector space

ML Model

Embeddings:
We use skip-gram embeddings

Informally, embeddings are nice because they support addition
and neural networks are good at doing addition

E.g. Paris - France + Poland = Warsaw
Paris - France is the idea of “Capital city”-ness

Distributed Representations of Words and Phrases and
their Compositionality (Mikolov et al.)

ML Model

Char Embeddings:

Learn a embedding for characters

This lets us get some information for
words not in our vocabulary

Some new deep-learning models are
entirely character-based

ML Model

GRU:

Inspiration: As you read a sentence, you
store some information about what you
have read so far

You use this information to infer the
meaning of new words

After each word ask: “What is this
sentence about?”

ML Model

GRU:

As the GRU reads, it gets its previous
memory ht-i and the current word xt

It outputs its memory after each new word

We break our analogy by having the GRU
read in both directions -- hence bidirectional

GRU is stacked two layers deep

ML Model

Image Taken from : http://colah.github.io/

CRF:

The dense layer gives us the probability
that a word is a specific BIOES tag.

But taking the max probability isn’t
always correct

Also we might generate an invalid BIOES
sequence (e.g. BO)

ML Model

CRF:

Model dependencies between labels

Given outputted labels x1x2...xt-1, and predicted probabilities, find
 Xt = argmax p(L|x1x2...xt-1) for all labels L

Do this by finding the probability that two labels are in sequence

E.g. p(E|B) = 0.7, p(O|B) = 0

ML Model

We’ve described our model:

Now to create pseudomenus we aggregate our tags:

ML Model

Aggregation Overview
Converts labelled reviews to Pseudomenus

We want to merge similar items:
● Fried Chicken Sandwich
● Crispy Fried Chicken Sandwich

We want to filter false positives

We use fuzzy matching to merge, frequency to filter

Aggregation Example
● Labelled Reviews

○ The Chicken Burrito was good
● Pseudo Menu

○ Chicken Burrito : 1

● Not In Pseudo Menu

Aggregation Example
● Labelled Reviews

○ The Chicken Burrito was good
○ The Chickn Burrito was good

● Pseudo Menu
○ Chicken Burrito : 2

● Not In Pseudo Menu
○ Chickn Burrito : Typo Duplicate

Aggregation Example
● Labelled Reviews

○ The Chicken Burrito was good
○ The Chickn Burrito was good
○ The Veggie Burrito was good

● Pseudo Menu
○ Chicken Burrito : 2
○ Veggie Burrito : 1

● Not In Pseudo Menu
○ Chickn Burrito : Typo Duplicate

Aggregation Example
● Labelled Reviews

○ The Chicken Burrito was good
○ The Chickn Burrito was good
○ The Veggie Burrito was good
○ The Spicy Veggie Burrito was

good

● Pseudo Menu
○ Chicken Burrito : 2
○ Veggie Burrito : 2

● Not In Pseudo Menu
○ Chickn Burrito : Typo Duplicate
○ Spicy Veggie Burrito : Duplicate

Aggregation Example
● Labelled Reviews

○ The Chicken Burrito was good
○ The Chickn Burrito was good
○ The Veggie Burrito was good
○ The Spicy Veggie Burrito was

good
○ This restaurant was good

● Pseudo Menu
○ Chicken Burrito : 2
○ Veggie Burrito : 2

● Not In Pseudo Menu
○ Chickn Burrito : Typo Duplicate
○ Spicy Veggie Burrito : Duplicate
○ Good : Low Confidence

After aggregation we’ll get
something that looks like this:

A pseudomenu!

Aggregation Example

You need:
● A way of turning data -> training data
● A dataset
● A model
● Some infrastructure
● Evaluation metrics

ML Cookbook

● How to get the dataset
● How to generate the training data
● How to train the model
● How to deploy the model

The main enemy of ML projects is time

One of the benefits of working at a large company is
that these problems have been solved before :)

ML Infrastructure

mrjob is Yelp’s map-reduce framework

You need:
● A way of turning data -> training data
● A dataset
● A model
● Some infrastructure
● Evaluation metrics

ML Cookbook

Model Evaluation
Model metrics (per sentence):

● Per-class precision, recall, F-Score

Aggregation metrics (per pseudomenu)
● Precision, Recall, F-Score

But we’re not confident that our training data is good, and we can’t
directly evaluate the user experience

Idea: A/B testing

Crowdsourcing Evaluation

Human In the Loop Evaluation

Coverage Evaluation

Summary
No-Menu Biz

● Improving the data
○ Data filtering
○ Data processing

● Improving the model
● Evaluating

Improving Pseudomenus

Earlier we saw:

The tagger’s correctness directly affects our model
Our choice of Menus and Reviews is also important

Data Improvements

People don’t always write what’s exactly in the menu

A lot of work went into improving the robustness of the tagger

Fuzzy matching:
`The chicken burrito` == `chicken burrito`
`6 pieces chicken wings` == `chicken wings`
`flambé` == `flambe`
`chickn brurito` == `chicken burrito`
`n5. Broccoli Beef` == `broccoli beef`
`Chicken Curry ***` == `chicken curry`
`Veggie Burrito (vegan)` == `veggie burrito`

Data Improvements

Selecting Menus:
● Idea: Menus from different providers have quirks that cause them

to be less suitable
● This causes food words to not be tagged in the training data,

confusing the model

E.g. the menu item ‘n5. Broccoli beef’ is unlikely to appear in review text

Datasets:
1. All menus
2. Owner-verified only
3. Grubhub only

Data Improvements

This didn’t work :(
Selecting Menus:
● Fuzzy-matching/regex was sufficient to deal with provider-specific

“quirks”
● The decrease in train data size reduced performance
● Lesson: human prior knowledge can be used to clean training data
● Manually look through the training data to find patterns for Regex,

etc.
● It’s easy to find stray punctuation, bad prefixes, etc. and clean them

Data Improvements

Selecting Reviews:

Generally more data -> better model
But in this case out-of-date reviews sent to the tagger “poison” the
training data

1. All reviews
2. Reviews from past 6 months
3. Reviews fresher than the menu
4. Intersection of #2 and #3

Best dataset: Past 6 months of reviews

Data Improvements

● Improving the data
○ Data filtering
○ Data processing

● Improving the model
● Evaluating

Improving Pseudomenus

Introduced in Attention Is All You Need (Vaswani et al.)

Makes use of the attention mechanism first
introduced in Neural Machine Translation by Jointly
Learning to Align and Translate (Bahdanau, Cho and
Bengio)

Had worse performance than our BiGRU until OpenAI
released a paper on finetuning transformers

Transformer Networks

Finetuning:

Brings ideas of transfer learning to transformers:

If one person trains a transformer to perform a
generic language task, everyone can go finetune it
on domain-specific tasks

Radford et al. open-sourced their generic
transformer for everyone (including us) to use!

Transformer Networks

Improving Language Understanding
with Unsupervised Learning
(Radford et al.)

Main idea: Attention

Given a sentence, attention asks “Which are the
important words in the sentence?”

A weighted sum of those word embeddings acts
like the “idea” of the sentence

But this seems like a difficult question to ask…

How do transformers deal with that?

Transformer Networks

Improving Language Understanding
with Unsupervised Learning
(Radford et al.)

Masked Attention:

Have the model compute attention for every prefix
of the sentence

This makes the attention simulate reading order

Transformer Networks

Improving Language Understanding
with Unsupervised Learning
(Radford et al.)

Multi-head Attention:

Instead of asking one question, ask several

This lets us split up the task of understanding
sentence structure into several simpler tasks

Transformer Networks

Improving Language Understanding
with Unsupervised Learning
(Radford et al.)

Self-attention:

Instead of computing a weight for each word,
compute weights between pairs of vectors

Self-attention also has the sentence vector encode
the question that should be asked

This is insanely cool! A layer tells the layer above it
what kind of questions to ask about its structure

Transformer Networks

Improving Language Understanding
with Unsupervised Learning
(Radford et al.)

Attention Head Example:
We can visualize the action of attention heads

This head of the model learned performs
anaphora resolution.

Anaphoras are when we use words to avoid
repeating phrases.

● Lucy went to the movies. She had fun.
● The Law will never be perfect but its application should be just.

Transformer Networks

Improving Language Understanding
by Generative Pre-Training
(Radford et al.)

● Improving the data
○ Data filtering
○ Data processing

● Improving the model
● Evaluating

Improving Pseudomenus

Another CrowdFlower job

Non-main dish frequency decreased by 25%
Number of popular dishes increased by 16%

Evaluating Results

Miscellaneous Improvements

Miscellaneous Improvements
● Debug view (previous slide)
● Improved evaluate metric (fuzzy F-score)

○ Subset matching
■ Gold: I had the chicken burrito
■ Predicted: I had the chicken burrito

○ Common food matching
■ Gold: I had the nachos
■ Predicted: I had the nachos

ML isn’t always the way to go

Your main enemy in ML projects is time

Exploring the output of your model/scripts helps you ideate

Be creative! Come up with metrics that model your problem

Summary

Questions

www.yelp.com/careers/

We're Hiring!

@YelpEngineering

fb.com/YelpEngineers

engineeringblog.yelp.com

github.com/yelp

