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Software engineer @ Yelp on the 
Semantic Business Info team

2 years Mechatronics Engineering ->
1 year Software Engineering ->
2 years CS + C&O

     board games, cooking, language 
learning, math

About Me



1st coop as a cyber-security developer 

2nd/3rd coop: Yelp operations intern

My Path into Data Science



My Path into Data Science
Can I do data 
science now? 
(I did Andrew Ng’s ML 

course)

Sure!



Yelp’s Mission
Connecting people with great

local businesses.



What is Popular Dishes?



Ease cognitive burden
Show users the best menu items

Aid in discovery
“Take the guesswork out of what to order”

Beautify
Make the existing UI more beautiful

Popular Dishes Mission





Highlights service

Show popular menu items in reviews

Already on the biz page, just needs a UI 
update

Popular Dishes Inspiration



Only 30% of restaurants have menus

Users won’t open Yelp to check Popular 
Dishes if it’s only there 30% of the time

What would a solution look like?

Popular Dishes Problem



Sometimes we think of ML as a solution to any problem

But for simple problems, ML
● Takes longer
● Creates more tech debt
● Is less efficient

Non-ML Ideas



Idea: Get more menus
● We could try to encourage businesses to submit menus
● Pay a company to scrape menus for us
● Do OCR on user-submitted menu photos
● Scrape business web-pages for menu data

Ultimately this won’t get us enough menus

The last two ideas are also very difficult!

Non-ML Ideas



Idea: If a restaurant sells a dish it’s probably on a menu 
somewhere

Create a universal menu merging all of our menus into one

Problem: Fuzzy matching is slow
on big menus, no signature dishes

Non-ML Ideas



Alright… you’ve convinced me.

We’ll use ML to bridge the gap 
between reviews and Popular 
Dishes.

But how to implement this ML?

ML Ideas



You need:
● A way of turning data -> training data
● A dataset
● A model
● Some infrastructure
● Evaluation metrics

ML Cookbook



Having an algorithm read reviews for a business 
and output its entire menu is hard

Litmus test for feasibility: can you do that?

Please read all 5000 reviews and then tell me the 
menu from memory

ML Training Data



What I can do:
What things in a review are food?

“I got the spicy chicken burrito 
and the nachos”

Do this for each review and 
merge the results

ML Training Data



This is a well-known sequence classification problem

● Sequence labelling 
○ Mark sections in sequences with labels

○ Named Entity Recognition (NER)
■ John Doe lives in Canada ->

(John Doe)(Person) lives in (Canada)(Place)

○ Food Recognition
■ The risotto was amazing ->

The (risotto)(Food) was amazing

ML Training Data



We don’t just mark things as food.

● BIESO Labels
○ Begin, Inside, End, Singleton, Outside
○ (The O) (Spicy B) (Chicken I) (Burrito E) (and O) (nachos S) (were O) (delicious O)
○ Some sequences can be invalid (eg: O,O,B,O,E)

We do this to differentiate adjacent words:
“I got the steak, risotto and greek salad” vs
“I got the (steak S), (risotto S) and (greek B) (salad E)”

ML Training Data



Okay but…

To train a model to do this tagging we 
need some training examples

Our existing tools look promising

We can modify our existing matcher to 
tag the matches with BIESO labels

ML Training Data



The result:

We’ve created a way to turn our data into training data!

ML Training Data



You need:
● A way of turning data -> training data
● A dataset
● A model
● Some infrastructure
● Evaluation metrics

ML Cookbook



We’ll just make a naive choice for now:

Restaurants with menus and at least 5 reviews

ML Dataset



~20 million restaurant reviews
30% of restaurants have menus

ML Dataset



You need:
● A way of turning data -> training data
● A dataset
● A model
● Some infrastructure
● Evaluation metrics

ML Cookbook



Zhilin Yang & Salakhutdinov’s Sequence 
Tagging Model:
● State-of-the-art at project inception
● BiGRU
● Learned character embeddings
● CRF decoding

What the heck is this thing?

ML Model



Embeddings:
A set of k words can be embedded as a 
k-dimensional discrete space

But this makes it hard for the model to 
learn word associations (and results in 
huge model sizes)

We can project this k-dimensional space 
into a nicer low-dimensional vector space

ML Model



Embeddings:
We use skip-gram embeddings

Informally, embeddings are nice because they support addition 
and neural networks are good at doing addition

E.g. Paris - France + Poland = Warsaw
Paris - France is the idea of “Capital city”-ness

Distributed Representations of Words and Phrases and
their Compositionality (Mikolov et al.)

ML Model



Char Embeddings:

Learn a embedding for characters

This lets us get some information for 
words not in our vocabulary 

Some new deep-learning models are 
entirely character-based

ML Model



GRU:

Inspiration: As you read a sentence, you 
store some information about what you 
have read so far

You use this information to infer the 
meaning of new words

After each word ask: “What is this 
sentence about?”

ML Model



GRU:

As the GRU reads, it gets its previous 
memory ht-i and the current word xt

It outputs its memory after each new word

We break our analogy by having the GRU 
read in both directions -- hence bidirectional

GRU is stacked two layers deep

ML Model

Image Taken from : http://colah.github.io/



CRF:

The dense layer gives us the probability 
that a word is a specific BIOES tag.

But taking the max probability isn’t 
always correct

Also we might generate an invalid BIOES 
sequence (e.g. BO)

ML Model



CRF:

Model dependencies between labels

Given outputted labels x1x2...xt-1, and predicted probabilities, find
    Xt = argmax p(L|x1x2...xt-1) for all labels L

Do this by finding the probability that two labels are in sequence

E.g. p(E|B) = 0.7, p(O|B) = 0

ML Model



We’ve described our model:

Now to create pseudomenus we aggregate our tags:

ML Model



Aggregation Overview
Converts labelled reviews to Pseudomenus

We want to merge similar items:
● Fried Chicken Sandwich
● Crispy Fried Chicken Sandwich

We want to filter false positives

We use fuzzy matching to merge, frequency to filter



Aggregation Example
● Labelled Reviews

○ The Chicken Burrito was good
● Pseudo Menu

○ Chicken Burrito : 1

● Not In Pseudo Menu



Aggregation Example
● Labelled Reviews

○ The Chicken Burrito was good
○ The Chickn Burrito was good

● Pseudo Menu
○ Chicken Burrito : 2

● Not In Pseudo Menu
○ Chickn Burrito : Typo Duplicate



Aggregation Example
● Labelled Reviews

○ The Chicken Burrito was good
○ The Chickn Burrito was good
○ The Veggie Burrito was good

● Pseudo Menu
○ Chicken Burrito : 2
○ Veggie Burrito : 1

● Not In Pseudo Menu
○ Chickn Burrito : Typo Duplicate



Aggregation Example
● Labelled Reviews

○ The Chicken Burrito was good
○ The Chickn Burrito was good
○ The Veggie Burrito was good
○ The Spicy Veggie Burrito was 

good

● Pseudo Menu
○ Chicken Burrito : 2
○ Veggie Burrito : 2

● Not In Pseudo Menu
○ Chickn Burrito : Typo Duplicate
○ Spicy Veggie Burrito : Duplicate



Aggregation Example
● Labelled Reviews

○ The Chicken Burrito was good
○ The Chickn Burrito was good
○ The Veggie Burrito was good
○ The Spicy Veggie Burrito was 

good
○ This restaurant was good

● Pseudo Menu
○ Chicken Burrito : 2
○ Veggie Burrito : 2

● Not In Pseudo Menu
○ Chickn Burrito : Typo Duplicate
○ Spicy Veggie Burrito : Duplicate
○ Good : Low Confidence



After aggregation we’ll get 
something that looks like this:

A pseudomenu!

Aggregation Example



You need:
● A way of turning data -> training data
● A dataset
● A model
● Some infrastructure
● Evaluation metrics

ML Cookbook



● How to get the dataset
● How to generate the training data
● How to train the model
● How to deploy the model

The main enemy of ML projects is time

One of the benefits of working at a large company is 
that these problems have been solved before :)

ML Infrastructure

mrjob is Yelp’s map-reduce framework



You need:
● A way of turning data -> training data
● A dataset
● A model
● Some infrastructure
● Evaluation metrics

ML Cookbook



Model Evaluation
Model metrics (per sentence):

● Per-class precision, recall, F-Score

Aggregation metrics (per pseudomenu)
● Precision, Recall, F-Score

But we’re not confident that our training data is good, and we can’t 
directly evaluate the user experience

Idea: A/B testing



Crowdsourcing Evaluation



Human In the Loop Evaluation





Coverage Evaluation







Summary
No-Menu Biz



● Improving the data
○ Data filtering
○ Data processing

● Improving the model
● Evaluating

Improving Pseudomenus



Earlier we saw:

The tagger’s correctness directly affects our model
Our choice of Menus and Reviews is also important

Data Improvements



People don’t always write what’s exactly in the menu

A lot of work went into improving the robustness of the tagger

Fuzzy matching:
`The chicken burrito` == `chicken burrito`
`6 pieces chicken wings` == `chicken wings`
`flambé` == `flambe`
`chickn brurito` == `chicken burrito`
`n5. Broccoli Beef` == `broccoli beef`
`Chicken Curry ***` == `chicken curry`
`Veggie Burrito (vegan)` == `veggie burrito`

Data Improvements



Selecting Menus:
● Idea: Menus from different providers have quirks that cause them 

to be less suitable
● This causes food words to not be tagged in the training data, 

confusing the model

E.g. the menu item ‘n5. Broccoli beef’ is unlikely to appear in review text

Datasets:
1. All menus
2. Owner-verified only
3. Grubhub only

Data Improvements



This didn’t work :(
Selecting Menus:
● Fuzzy-matching/regex was sufficient to deal with provider-specific 

“quirks”
● The decrease in train data size reduced performance
● Lesson: human prior knowledge can be used to clean training data
● Manually look through the training data to find patterns for Regex, 

etc.
● It’s easy to find stray punctuation, bad prefixes, etc. and clean them

Data Improvements



Selecting Reviews:

Generally more data -> better model
But in this case out-of-date reviews sent to the tagger “poison” the 
training data

1. All reviews
2. Reviews from past 6 months
3. Reviews fresher than the menu
4. Intersection of #2 and #3

Best dataset: Past 6 months of reviews

Data Improvements



● Improving the data
○ Data filtering
○ Data processing

● Improving the model
● Evaluating

Improving Pseudomenus



Introduced in Attention Is All You Need (Vaswani et al.)

Makes use of the attention mechanism first 
introduced in Neural Machine Translation by Jointly 
Learning to Align and Translate (Bahdanau, Cho and 
Bengio)

Had worse performance than our BiGRU until OpenAI 
released a paper on finetuning transformers

Transformer Networks



Finetuning:

Brings ideas of transfer learning to transformers:

If one person trains a transformer to perform a 
generic language task, everyone can go finetune it 
on domain-specific tasks

Radford et al. open-sourced their generic 
transformer for everyone (including us) to use!

Transformer Networks

Improving Language Understanding 
with Unsupervised Learning 
(Radford et al.)



Main idea: Attention

Given a sentence, attention asks “Which are the 
important words in the sentence?”

A weighted sum of those word embeddings acts 
like the “idea” of the sentence

But this seems like a difficult question to ask…

How do transformers deal with that?

Transformer Networks

Improving Language Understanding 
with Unsupervised Learning 
(Radford et al.)



Masked Attention:

Have the model compute attention for every prefix 
of the sentence

This makes the attention simulate reading order

Transformer Networks

Improving Language Understanding 
with Unsupervised Learning 
(Radford et al.)



Multi-head Attention:

Instead of asking one question, ask several

This lets us split up the task of understanding 
sentence structure into several simpler tasks

Transformer Networks

Improving Language Understanding 
with Unsupervised Learning 
(Radford et al.)



Self-attention:

Instead of computing a weight for each word, 
compute weights between pairs of vectors

Self-attention also has the sentence vector encode 
the question that should be asked

This is insanely cool! A layer tells the layer above it 
what kind of questions to ask about its structure

Transformer Networks

Improving Language Understanding 
with Unsupervised Learning 
(Radford et al.)



Attention Head Example:
We can visualize the action of attention heads

This head of the model learned performs 
anaphora resolution.

Anaphoras are when we use words to avoid 
repeating phrases.

● Lucy went to the movies. She had fun.
● The Law will never be perfect but its application should be just.

Transformer Networks

Improving Language Understanding 
by Generative Pre-Training 
(Radford et al.)



● Improving the data
○ Data filtering
○ Data processing

● Improving the model
● Evaluating

Improving Pseudomenus



Another CrowdFlower job

Non-main dish frequency decreased by 25%
Number of popular dishes increased by 16%

Evaluating Results



Miscellaneous Improvements



Miscellaneous Improvements
● Debug view (previous slide)
● Improved evaluate metric (fuzzy F-score)

○ Subset matching
■ Gold: I had the chicken burrito
■ Predicted: I had the chicken burrito

○ Common food matching
■ Gold: I had the nachos
■ Predicted: I had the nachos



ML isn’t always the way to go

Your main enemy in ML projects is time

Exploring the output of your model/scripts helps you ideate

Be creative! Come up with metrics that model your problem

Summary



Questions



www.yelp.com/careers/

We're Hiring!



@YelpEngineering

fb.com/YelpEngineers

engineeringblog.yelp.com

github.com/yelp


